9 research outputs found

    Non-monotonic changes in clonogenic cell survival induced by disulphonated aluminum phthalocyanine photodynamic treatment in a human glioma cell line

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Photodynamic therapy (PDT) involves excitation of sensitizer molecules by visible light in the presence of molecular oxygen, thereby generating reactive oxygen species (ROS) through electron/energy transfer processes. The ROS, thus produced can cause damage to both the structure and the function of the cellular constituents resulting in cell death. Our preliminary investigations of dose-response relationships in a human glioma cell line (BMG-1) showed that disulphonated aluminum phthalocyanine (AlPcS<sub>2</sub>) photodynamically induced loss of cell survival in a concentration dependent manner up to 1 μM, further increases in AlPcS<sub>2</sub>concentration (>1 μM) were, however, observed to decrease the photodynamic toxicity. Considering the fact that for most photosensitizers only monotonic dose-response (survival) relationships have been reported, this result was unexpected. The present studies were, therefore, undertaken to further investigate the concentration dependent photodynamic effects of AlPcS<sub>2</sub>.</p> <p>Methods</p> <p>Concentration-dependent cellular uptake, sub-cellular localization, proliferation and photodynamic effects of AlPcS<sub>2 </sub>were investigated in BMG-1 cells by absorbance and fluorescence measurements, image analysis, cell counting and colony forming assays, flow cytometry and micronuclei formation respectively.</p> <p>Results</p> <p>The cellular uptake as a function of extra-cellular AlPcS<sub>2 </sub>concentrations was observed to be biphasic. AlPcS<sub>2 </sub>was distributed throughout the cytoplasm with intense fluorescence in the perinuclear regions at a concentration of 1 μM, while a weak diffuse fluorescence was observed at higher concentrations. A concentration-dependent decrease in cell proliferation with accumulation of cells in G<sub>2</sub>+M phase was observed after PDT. The response of clonogenic survival after AlPcS<sub>2</sub>-PDT was non-monotonic with respect to AlPcS<sub>2 </sub>concentration.</p> <p>Conclusions</p> <p>Based on the results we conclude that concentration-dependent changes in physico-chemical properties of sensitizer such as aggregation may influence intracellular transport and localization of photosensitizer. Consequent modifications in the photodynamic induction of lesions and their repair leading to different modes of cell death may contribute to the observed non-linear effects.</p

    The Princeton Protein Orthology Database (P-POD): A Comparative Genomics Analysis Tool for Biologists

    Get PDF
    Many biological databases that provide comparative genomics information and tools are now available on the internet. While certainly quite useful, to our knowledge none of the existing databases combine results from multiple comparative genomics methods with manually curated information from the literature. Here we describe the Princeton Protein Orthology Database (P-POD, http://ortholog.princeton.edu), a user-friendly database system that allows users to find and visualize the phylogenetic relationships among predicted orthologs (based on the OrthoMCL method) to a query gene from any of eight eukaryotic organisms, and to see the orthologs in a wider evolutionary context (based on the Jaccard clustering method). In addition to the phylogenetic information, the database contains experimental results manually collected from the literature that can be compared to the computational analyses, as well as links to relevant human disease and gene information via the OMIM, model organism, and sequence databases. Our aim is for the P-POD resource to be extremely useful to typical experimental biologists wanting to learn more about the evolutionary context of their favorite genes. P-POD is based on the commonly used Generic Model Organism Database (GMOD) schema and can be downloaded in its entirety for installation on one's own system. Thus, bioinformaticians and software developers may also find P-POD useful because they can use the P-POD database infrastructure when developing their own comparative genomics resources and database tools

    Physiological Aspects of UV-Excitation of DNA

    No full text
    corecore